The effects of irradiation on the noble gases in matrix material of the Allende (CV3) meteorite

Parastoo Ghaznavi⁽¹⁾, Yogita Kadlag⁽¹⁾, Ingo Leya⁽¹⁾, David Haberthuer⁽²⁾

(1) Physics Institute, University of Bern, Switzerland

(2) Anatomy Institute, University of Bern, Switzerland

(parastoo.ghaznavi@unibe.ch)

Background

Micro-computed X-ray tomography (μ-CT) :

- ✓ Fast technology for studying textural, physical, and chemical properties of solid samples in 3 dimensions
- ✓ Currently becoming very popular in planetary sciences → sample preparation, curation, ...

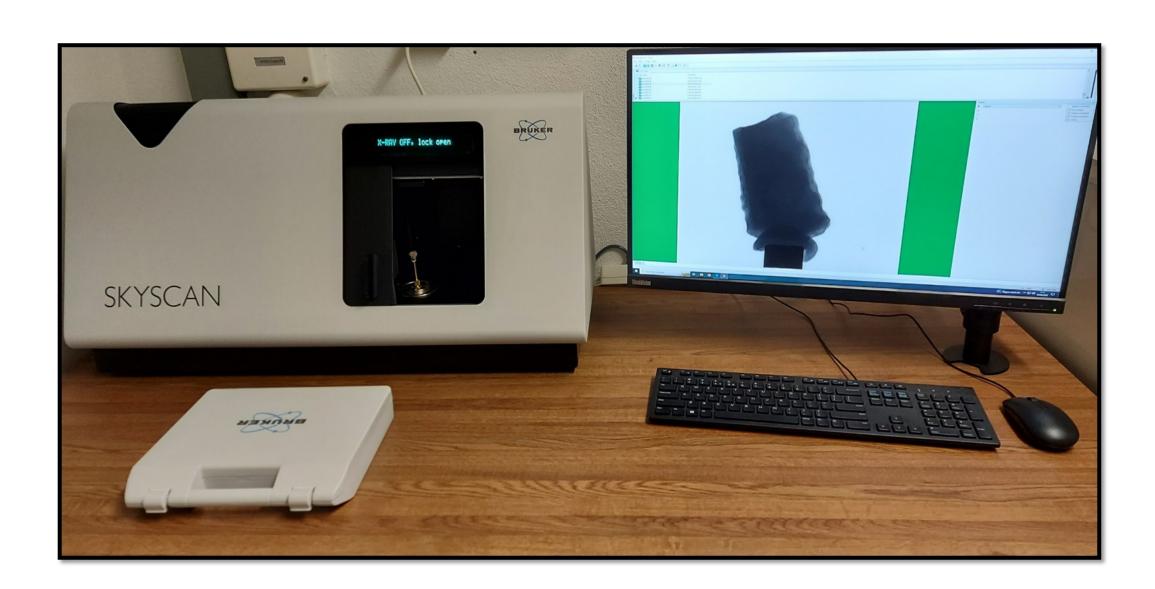


Fig 1. μXCT-Scanner (Bruker SkyScan 1174) at University of Bern

Experimental (1)

- O Here we study if X-ray scanning affects the noble gas budget of matrix samples from the CV3 chondrite Allende
- O We separated → Chondrules
 CAIs (Calcium-Aluminum-rich Inclusions)
- Matrix material \longrightarrow further powdered \longrightarrow sieved (33-µm mesh)
- O Why such a small grain size? If there are no measurable effects for such small grain sizes, there are no effects for bigger objects (that we usually study)
- O powdered matrix samples → irradiating three samples using the μXCT-Scanner (Bruker SkyScan 1174)
- O Irradiation energies --> 50 keV (plus two non-irradiated samples) 70 keV

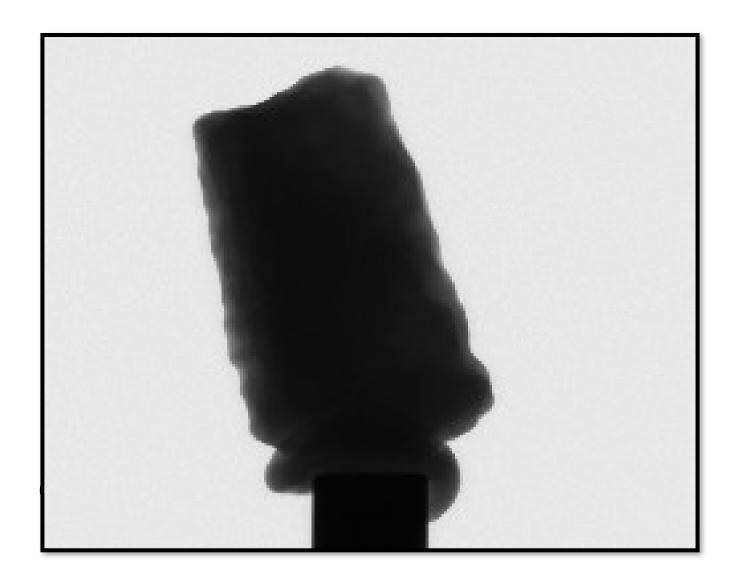


Fig 2. Image of sample scan

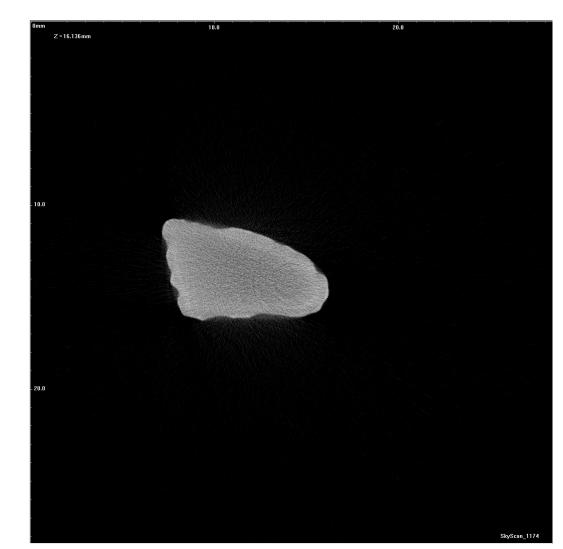


Fig 3. Cross section of sample in μXCT

Experimental

- O Five matrix samples from Allende meteorite. Three irradiated in μ XCT, two non-irradiated samples
- O Samples preheated in vacuum (approx. at 150°C, 24 h)
- O Sample degassing by laser melting ~2500°C
- O Measure He and Ne isotope concentrations using static noble gas mass spectrometry (MAP 215-50)

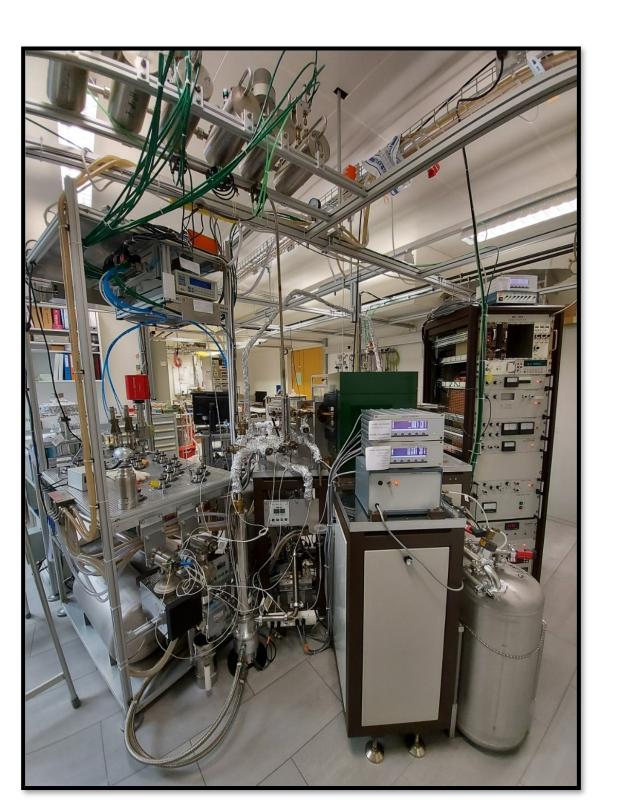


Fig 4. Noble gas laboratory at the University of Bern

Results & Conclusion

non-irradiated \longrightarrow 0.945 ± 0.020 O 3 He/ 21 Ne averages \longrightarrow irradiated samples \longrightarrow 0.950 ± 0.021

O No significant differences in the noble gas budgets between irradiated and non-irradiated samples, no trend with radiation dose

Sample	³ He/ ²¹ Ne	Uncertainties	³He/⁴He	Uncertainties
1	0.964	0.005	117006	727
2	0.925	0.010	113494	1471
3	0.953	0.004	114923	778
4	0.974	0.006	115773	888
5	0.922	0.007	111104	894

(ratios are in arbitrary units, not corrected for detector sensitivity)

Sample	Weight [mg]	Irradiation energy [kV]	Source current [microA]	Irradiation time [hours]	Radiation Dose (Gy)
1	2.66	no irradiation	-	-	-
2	2.82	no irradiation	-	-	-
3	2.57	100	100	13	152
4	2.57	70	142	14	114
5	2.49	30	210	14	31

References

- 1. Ebel et al., Meteoritics & Planetary Science 43:1445-1463, 2009
- 2. Friedrich et al., Meteorite & Planetary Science 51:429-437, 2016
- 3. Hezel et al., Geochimica et Cosmochimica Acta 116:33-40, 20134. Kothan et al., American Journal of Applied Sciences 8:923-926, 2011
- 5. Sears et al., Meteoritics & Planetary Science 53:2624-2631, 2018