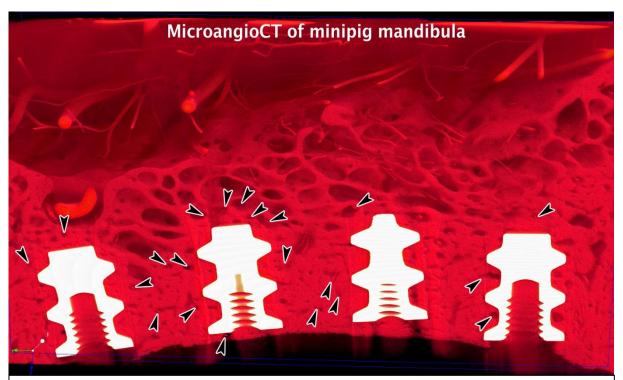
Assessment of Osteo-/Angiogenesis in Minipig Mandibula by MicroangioCT with µAngiofil

Rebecca Sandgren, David Haberthür, Nils Warfving, Benjamin Pippenger, Benjamin Bellón, Ruslan Hlushchuk


Corresponding Author: Ruslan Hlushchuk, PD MD (Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland; Email: <u>ruslan.hlushchuk@ana.unibe.ch</u>)

Objectives: In the dental research, the 3D-imaging of the microvasculature within the bone and soft tissue without its destruction remains a major challenge. Application of microCT with appropriate contrast agents could help resolve the situation. Our aim was to establish a reliable and reproducible protocol for the high-resolution non-destructive 3D-vascular imaging of the minipig mandibula, eventually with implanted metal parts.

Methods: As an intravascular contrast medium we used the polymer-based contrast agent µAngiofil (Fumedica AG, Switzerland). The animal model of choice was the Göttingen minipig (Ellegaard Göttingen Minipigs, Denmark). The perfusion procedure was performed through the carotid artery/ies or its distal branches. The obtained samples were scanned using Skyscan 1275 and Skyscan 2214 microCT-systems (Bruker microCT, Belgium).

Results: The detailed perfusion protocol respects the anatomical peculiarities of Göttingen minipigs and enables reproducible perfusion of minipig mandibula on the side of interest. The contrast agent μ Angiofil has superior perfusion qualities and a different, from bone and metal, X-ray absorption index, which enables excellent simultaneous visualization of those structures (see the image: arrowheads indicate the microvessels in the vicinity of implanted metal parts). Afterwards the samples are still available for any other standard investigation method (e.g., correlative histology).

Conclusions: The established perfusion protocol enables excellent non-destructive 3D-imaging of microvasculature, bone tissue and metal implants in the minipig mandibula. This approach allows quantitative analysis of various structures as well as their subsequent correlative morphology. It is a very promising tool in the preclinical dental research dealing with angiogenesis and bone/soft tissue formation around implants.

MicroangioCT of minipig mandibula using \muAngiofil. The described approach provides excellent visualization of the bone, implanted metal parts (white) and vasculature (arrowheads=microvessels near implants).